Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 31, 2026
-
Abstract Southwestern North America has experienced significant temperature increases over the last century, leading to intensified droughts that significantly affect montane forests. Although tree‐ring data have provided long‐term context for this recent drought severity, the varying physiological responses of trees to climate variability make it challenging to disentangle the combined influence of temperature and soil moisture. Here we investigate complex climate‐growth relationships in Rocky Mountain bristlecone pine (Pinus aristata) at a low‐elevation and a high‐elevation site using quantitative wood anatomy (QWA). Significant correlations with climate were found for low‐elevation tree‐ring width (TRW) and earlywood chronologies, including positive correlations with spring and early summer precipitation and drought indices and negative correlations with spring and early summer maximum temperatures. At high elevations, TRW and earlywood chronologies show positive responses to summer moisture, whereas latewood chronologies correlate positively with August and September maximum temperatures and negatively with August precipitation. We leverage this differing seasonality of moisture and temperature signals and compare the QWA data to known droughts. The earlywood lumen area is found to be highly responsive to drought because of its physiological reliance on water availability for maintaining turgor pressure during cell enlargement. We also observed a decline in temperature sensitivity at the high elevation site, suggesting shifts in the dominance of limiting factors. Integrating QWA with traditional dendrochronology improves interpretations of tree‐ring data for use in climate reconstruction, offering detailed insights into tree physiological responses and the mix of environmental and developmental controls on cell growth.more » « less
-
Schools are increasingly offering opportunities for students to take classes in computer and information sciences, but the numbers and diversity of students who enroll and persist are not always representative of a school's student population. To meet these goals, students' needs and interests must be addressed. This paper will describe what matters for students in high school and community college computing classes. The data include interviews with 30 students (73% Latinx), surveys from 58 students (77% Latinx) and interviews with three counselors (2 college, 1 high school). The findings show that students will engage and persist in computing pathways when they: a) are project-based where those projects are hands-on and allow them to see the results of their work, b) create positive social connections and a sense of belonging, and c) create opportunities for learners to be active agents in their learning. Students will also enroll in computing classes to fulfill requirements for graduation or for a different major, but they are less likely to persist if they don't see the results of their work or have support and encouragement from teachers or counselors. The factors that are most important vary for high school and college students, and counselors are more likely to describe extrinsic sources of motivation. The findings are interpreted using self-determination theory, which provides a framework for understanding how students' sense of autonomy, competence, and connection influence their motivation to engage and persist in computing.more » « less
An official website of the United States government
